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Quantum mechanics on the lightcone: I. the spin-zero case 
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Department of Mathematics, UniverJity of Nottingham, Notlingham NG7 ZRD, UK 
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Abstract. In the usual form of quantum mechanics the wavefunctions are defined at 
instants of time, i.e. over constant time hyperplanes. This paper considers the wavefunc- 
tions and their operators as acting over past lightcones from p i n t s  on a world l ine-a 
special case of Dirac’s ‘pint’ form of dynamicp. Here the classical lightcone generators 
are quantized. We belime these lightcone operators, obeying the Poincan? gmup algebra, 
are new. The Hermiticity of these operators and their basis states are discussed. 

1. Introduction 

In the usual relativistic dynamics the position and momentum of a particle is deter- 
mined as it crosses the observer’s constant-time hyperplanes t , ,  t , ,  . . . . Similarly in 

time hyperplane; expectationvalues of obsenables may then be calculated as functions 
of t .  Note that the value of the wavefunction over the hyperplane can only be known 
at some future time, assuming that information cannot travel faster than the speed of 
light. Duac called this formalism the ‘instant’ form of mechanics-where the instants 
are the hyperplanes t. 

In lightcone dynamics the particle position and momentum is determined as it 
crosses the stack of past lightcones Tl, T. ,  . . . centred on an observer’s world line. 
Similarly in lightcone quantum mechanics the wavefunction is evaluated on the past 
lightcone, and expectation values calculated accordingly. This information is, in prin- 
ciple, available to the observer at the origin. No observer is privileged, and provided 
the Poincark algebra is satisfied, any particular observer can be selected to co-ordinate 
information from the others. This enables such an observer, 0 say, having received 
information from the others, to describe the state of the system under study on a past 
lightcone described by a particular time Tl in Os frame of reference. If the system 
remains undisturbed 0 will be able to predict the state on past lightcones determined 
by O s  time T where T 2 TI. This means that the state of the system is determined 
at all points of spacetime on the ‘future’ side of the lightcone determined by TI. 

The approach is a special case of Dirac’s ‘point’ form of dynamics [I]-in which 
the ‘point’ T is thought of as a past lightcone from a point on the observer’s world 
line. Unfortunately the term ‘lightcone’ quantization has also been used in high-energy 
particle physics and string theory [3,4] for mechanics on a hyperplane advancing at 
the speed of light. Dirac called this the ‘front’ form of mechanics, and it should not 
be confused with the formalism presented here. 

03054470~174673+13~4 .50  @ 1992 IOP Publishing Lid 4673 

relativktic qogntfim- mechania !hp waveffin&3n k csfia!!y eva!fiatea_ over a mngyant. 
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Since Dirac’s pioneering paper, there has been relatively little work on light- 
cone quantum mechanics-in the sense outlined above-until Derrick’s recent pa- 
pers. Peres [SI obtained a set of Poincare group operators with (undefined) inverse 
operators. Derrick [6] approached the problem by considering the basis states on the 
lightcone-we will use many of his results and notation. 

Dirac’s original motivation for considering quantization over alternative three- 
dimensional surfacee‘points’ and ‘fronts’-was that particle interactions may be 
more satisfactorily described on these. surfaces. For example in electromagnetic the- 
ory, the force on a particular particle is calculated by the other particle variables on 
its past lightcone. Simplification may be achieved by working in lightcone coordinates 
from the start. We limit ourselves in this paper to the free-particle case, which is 
a necessary preliminary step before the more interesting interaction theory can be 
considered. 

gives the quantization procedure leading to the ten operators of the PoincarC group 
algebra-these are listed in (3.13); section 4 contains the proof of the commutation 
requirements; section 5 derives the continuity equation; section 6 considers the scalar 
product space and the Hermiticity of these operators; section 7 derives the basis 
states; section 8 is the conclusion. 

Section 2 i!l.n.!mc!u_ces !ightmnc CoQr&!!Im I!!!! !he c!zssicz! ge-nermq sectier! 3 

2. Hamiltonian theory In lighteone coordinates 

In the ‘instant’ form of dynamics, space translations and rotations leave the instant 
invariant, so the momentum and angular momentum generators will be simple com- 
pared to the energy and boost generators. In lightcone dynamics, however, a ‘point’ is 
invariant under boosts and rotatio-o the boost and angular momentum (Lorentz 
group) generators will be simple, the energy-momentum generators more compli- 
cated. 

In this section we first follow Derrick’s [2] derivation of the set of Poincare group 
generators (equation (2.3))-these are functions of v, the position vector on the past 
lightcone, and its conjugate variable T‘. We then transform these generators to a new 
set in which the non-relativistic approximation is obvious. It is this transformed set 
that we will quantize. 

Consider an observer whose world line we take to be at the spatial origin. Instead 
of labelling a particle’s world line by ( t ,  z ( t ) ) ,  we now refer to the observer’s past 
lightcones and relabel the particle’s world line by (T, y ( T ) ) ,  where TI ,  T, . . . is the 
stack of past lightcones centred on the observer’s world line. Keeping the same space 
components, then we determine T from t by adding to t the delay Izl/c for light to 
reach the observer. So 

where we have followed Derrick’s notation in defining y I lyl and we have used 
natural units where c = 1. 

The usual action integral is 6[-mJ(dtz - d ~ ~ ) ’ / ~ ]  = 6[-mJ(1 - z z ) ’ ~ z d ~ l ,  
becoming in the new coordinates (using d z  = dy, d t  = d T  - dy) 
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where U E dg/dT, vY E dy/dT = " 5 ,  and L is the new Lagrangian. The variable 
conjugate to tl we call U', defined as 

and referring to Derrick [2] for details the Hamiltonian can be calculated in terms of 
21 and d. The complete set of Poincar6 group generators is 

. .  
10 .20 .30 ( j 2 3  93 '31 , 3  .12) I J = ,# ( j  , J  , J  ) = K = y f f ' .  

These ten generators (2.3) satisfy the Poisson bracket relations of the Poincard group 
algebra which are 

{PA,P"l = 0 (2.4) 

(2.5) { j A P , P " ) = l l  P 7 P 
{jAP,jVP} = + P j P Y  + qv j X P  - 7 X v j P P  - 7 P P j h v  (2.6) 

P" A - A" P 

where the Poisson bracket is 

The generators above seem to bear little resemblance to the usual ones, the reason 
being that for low velocities U' is not equal to mu but has the extra term mt-see 
(L.L,. l l l W  aug&,ca,a rrralur,y, L U G  cQLI"IIIcQ1 LIaIIJL", IIIaLLVII 
,* *\ -I^ "..",.""." .%.. .-^"^C^nnr:~^ 

(2.8) tl 7r' = U + m- 
Y 

so that for low velocities U TZ mu. Substituting (2.8) into the generators (2.3) we 
obtain the new set 

J = y x m  K =  y ~ + y m .  

We can see that when !U[ m. H rr m + b r 2 / m ,  p = U and now we have the 
kinetic energy term in If as in non-relativistic theory. In the  next section we will 
quantize this latter set of PoincarB group generators, in which the non-relativistic 
approximation is immediately apparent. 

As y now represents the position of a particle on the observer's past lightcone, 
the Poisson bracket relationship {ye, p b }  = 6 .,* no longer holds (p is the generator 
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of translations in Minkowski space, not along the lightcone). The evolution of the 
position operator is determined as usual: 

S N Mosley and J E G Farina 

1 Y  _ -  1 YY *2 = 2n- 
2 21 * n + Ym 2 (Y . ?r + ym)2 

- - y ( n - L  - YP 
2 v . n + y m  -1) = ye n+ ym a , * r + y m  

P 
m when l n l < m  (2.10) _ _  - 

as expected. 
Note that due to the identities {K, -y) = y and {IC” ,  yb) = -ydob, which are 

easily verified, ?I is the space component of the 4-vector y (-y, Y) [;?]-where we 
define a 4-vector as satisfying the Poisson bracket relationship (2.5), i.e. transforming 
correctly under boosts and rotations. Then we may construct the following h r e n k  
scalars from the two 4-vectors p and y: 

p . p E HZ - p 2  = m 2 

y .  y E y 2 -  yz = 0 

y . p E -yH -g . p  = -(g.n + ym) 

(The first scale may be verified from their definitions (2.9).) 

(2.11) 

3. Quantization 

In this section we quantize the ten classical generators (2.9) which must then obey 
the Poincar6 group commutation identities 

[PA, P’l = 0 (3.1) 

[ ~ ~ ’ , p ” ]  = i(o’ypA ( 3 4  
[ J A P ,  J”P]  = ; ( ‘ I A P J P ”  + ‘ I ’ Y J A P  - ‘ I J  A ”  IrP - ‘ I J )  P P  At, (3.3) 

(cf (2.7)-(2.9)). The g and n now become the operators fi  and ir which we require to 
be Hermitian in the space ‘H?, which is the Lorentz-invariant positivedefinite Scalar 
product space over the past lightcone 

so 
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Note that the y112 terms in the latter are necessary for ir to be a self-adjoint operator 
with respect to the scalar product 'Hg. The relatively simple boost and rotation 
generators from (2.9) become 

These operators are Hermitian in 7tg by inspection. 
In the m e  of the H and p operators (2.9) there is an awkward l / (y .  x + ym) 

component which appears difficult to quantize. We first form the Hermitian operator 
corresponding to (U 1 x + ym) which we will call E,: 

y .  A + y m  -+ C, = c o i r  + ym 

where A o B is the symmetric product + ( A B  + BA) ,  

(3.8) 

which is Hermitian due to its symmetric construction. We expect C, to be Lorenk- 
invariant as is its counterpart in classical theory (see (2.11)), and it may be verified 
that C, does in fact commute with all J ,  K. 

Quantizing the l / (y .  A + ym) term, this must be an inverse operator to C, 
which we will call E;l. We define as 

or equivalently 

Then C;lCmf = C, C;If = f as required (see appendix 1). We can see from 
(3.9) that Eilf(y) depends on the values of f along the line between the point y 
and the vertex of the lightcone. The Hermiticity of E;' follows from the Hermiticity 
of E,. 

Now we can quantize the H generator from (2.9): 

(3.1Oa) 
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where Vz stands for la/8yl2. It is of interest to determine the non-relativistic 
approximation to (3.100). To this end we will temporarily reinsert the speed of light 
c into (3.100) (we have been using natural units with c = 1) obtaining 

S N Mmley and J E G Farina 

(3." H 1 -1 - = m c  - -Emc YV' . 
C 2 

. 8  But E,, E - i ~ y  + y c m  Y y m c  as c - 00, which is the non-relativistic 
approximation-when the past lightcones get flattened out to become constant-time 
hyperplanes. Then we may infer that as c - CO, and inserting this into 
(3.lOb) 

E 

- 0 _YV2 = m c  - z vz as e-CO. 
1 1  Y m c -  -- H 

c 1 y r r L C  17, 'C 

- 

Xiking out the rest energy mc2,  we recover the non-relativistic Schrodinger equation 
H = - A V z .  

" 
From (3.lk) we can see that the new evolution equation is 

iaT+ = H 1L m+ - fC;'yV' + (3.11) 

where + is a scalar. Note however that (3.11) is of first order in time as compared 
to the usual spin-zero relativistic equation-the Klein-Gordon-which is of second 
order. So if the wavefunction is given on the lightcone, then its evolution is uniquely 
defined. In section 5 we obtain the positive and negative energy eigenfunctions of 
the Hamiltonian operator (3.100). 

To quantize the p generator we use the commutation requirement from (3.2), 
namely [K, HI = ip. So recalling that K commutes with C, and hence with E;', 

p = -i[K, HI I -i[K, m - C;'kjyVZ] 

We now use [y, V2] = - z s y ,  which we derive in appendix 3. Then 
Y BY 

p = -z-1 (-iyvz - iy (---y) 3 - ,my&) 
' 2 8  ., 

1 

2 Y 

(recalling (3.8)) a -iyvz - 2 ~ ,  a,) 

Inserting the speed of light c, (3.12~) becomes 

(3.12~) 

as c - CO. (3.1%) . a  1 1  . a  + ---yo' 2 -1- 
ay 

p = -i- + -E,: yvz Y -1- 
a 1 -  
au 2 By 2 y m c  
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We have now defined in (3.6), (3.7), (3.10~~) and (3.12n) all the ten operators 
satisfying the Poincark group algebra which we collect below: 

. a  1 -1vz 1 
H = m -  -C;,'yV2 p = + -c, 

(3.13) 
2 au 2 
a a 
ay ay 

J =  -iy X - K = -iy- + y m .  

There is no problem in taking the zero-mass limit of these operators which then 
become 

(3.14) 

In the next section we will show that the above operators do in fact obey the Poincark 
group commutation identities (3.1)-(3.3), in particular the more difficult of these 
identities, namely the commutation of the energy-momentum operators (3.1), i.e. 
[PA, PPI = 0. 

4. Commutation relations 

An important property of the operators C, and E;' is that they are func- 
tions of y and so commute with any function of the angular variables :. The 
commutator requirement [Ka ,pb ]  = i P b H  may be checked using the identities 
[ K " ,  -ia/ayb] = (yb/y)a/aya + i m P b ,  [ K " ,  yb] = -' 1y6"~ ,  which are easily 
verified, and [KO, Vz] = -(2/y)C,a/ay', which we derive in appendix 3. Next 
we calculate [ H , p ] ,  for which we need the identity 

which we derive in the appendix h q u a t i o n  (A3.7). Then 

a i  
(using (4.1)) 

= o  as desired. (4.2) 

Similarly the components of p may be shown to commute, again using (4.1), and the 
remaining Poincare group commutator identities are easily verified. 
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5. The continuity equation 

From (2.6) we can derive a continuity equation in the form 

S N MosIq and J E G Farina 

a a 
aT BY 

+ - . p = 0 

- - 1 [** -e,*+ 1 (E,,,+)*-+] 1 
p - 2  y Y 

and CC stands for the complex conjugate terms. Recall that in the non-relativistic 
limit p E -i& and E, % ym in natural units. Then po z m@' + and 

'Ib show the continuity equation is satisfied, we first calculate 6 . p: 

whereas 
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If we now insert the evolution equation (3.11) we obtain 

Adding (5.4) and (5.5) results in all terms cancelling when the complex conjugates 
are included. 

6. Scalar products 

Recall the Hamiltonian operator H = m - +C;lyV*. The factors X i 1  and yV2 are 
each Hermitian in the positivedefinite scalar product space 71, from (3.4). However 
H is not Hermitian in 71, as the two factors do not commute. We will show that H 
is Hermitian in the following (indefinite) inner product space 

1 d3y 
%pin.ero=%z: ( 4 I + ) s z =  J ,  [ ( ~ , 4 ) * + + @ C m + l ~ ( 4 1 C ~ + ) y '  

(6.1) 

It may be wondered why we are now introducing the new space H s z  (with all the 
problems of its indefinite metric) after quantizing consistently in H,. This step is 
forced on us as any attempt to symmetrize the factors of H to obtain a Hamiltonian 
Hermitian in 31, fails, because the resulting operators do not commute as required. 
The lack of a positive-definite scalar product in the spin-zero case is reflected in the 
usual spin-zero relativistic (Klein-Gordon) theory, where the indefinite inner product 
space is 

However the introduction of 'ifsz is consistent with the results of the last section, in 
that ($ I $)sz,= J p o  d3y where po is the consemd (indefinite) density of (5.2). 

The Hamlltonian operator may be shown to he self-adjoint in RSz as follows. 
Considering the operator 2 (m - H) E C;'yVZ 

~ ( 4  I ( m  - z(+ I C,(m - HI+),  3 (4 I C,C;1~V2+), 

= (4 I YV*+), = (YVZ4 I+), = (%(X;1Yvz)4 I 4, 
= W m -  HMI &,,+), E W m -  H)4I C,+)sz. 

The rotation-boost operators are self-adjoint with respect to H s z ,  as they commute 
with E, and are self-adjoint with respect to H,. Then as H is self-adjoint, so is 
p E -i[K, H I .  
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7. The basis states on the lightcone 

The following are positive- and negative-energy eigensolutions of the Hamiltonian H :  

S N Masley and J E G Farina 

(7.1) 
~ eiwy- imy+ik .y  v,, s e - i w a - i m y - i b y  

where w = +Jw. Note that the wavefunctions introduced above are improper 
in that they are not normalizable, but they have no singularities. The proof that 

H uk = wu,,  (7.2) 

we leave to appendix 2. 
We could also prove that Huh = -wv,, by direct calculation but it is instructive 

to use the following method. First note from (3.8) the identity (E(-,,))* = - C ,  
implying = -E;'. Then if in (7.2) we replace m by -m, take the complex 
conjugate of the result, multiply each side by -1 and use the identity above, we obtain 

H v ,  = - w u k .  (7.3) 

We emphasize that both positive- and negative-energy solutions obey if$+ = 
H + .  This is different from the usual relativistic spin-zero case, where two first-order 
evolution equations are needed: 

i a +  = G+ 

. a  
I-+ = -G+ 

positive energy solutions at 

at negative energy solutions 

where G E (mZ - V2)1/2. 

8. Conclusion 

We have defined the p and J operators (3.13), and proved that they satisfy the 
Poincark group algebra. The operators are Hermitian in a Lorentz-invariant (indef- 
inite) scalar product space-in this respect being similar to the spin-zero relativistic 
case. Our basis states are similar to those found by Derrick in [6] , but have the extra 
factor e-imy. 

The main reason for Dirac to have [l] considered alternative forms of dynamics is 
that interactions may be more readily introduced. Any two points on a past lightcone 
are in general spacelike-separated, unless they are on a common ray from the vertex 
in which case they are lightlike-separated. However we suggest that interactions on 
a past lightcone would not violate causality because it is only in the future (at the 
vertex of the lightcone) that these interactions may be obsemd. 

Our next paper [7] deals with the spin-i case in lightcone coordinates-here the 
scalar product space is the positivedefinite space 'Hy. 
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Appendix 1. The operators E,,, and E;' 

Recall from (3.8) that 

(Our operator CO E -i&y is the same as Demck's operator C [6]). We first find 
the inverse of CO as follows: 

where K is any function of the angular variables. We require C;'f to be regular 
at y = 0 so we must have K = &then E;' is a linear operator. Note that f 
must be regular for C;'f to be defined; for example if f is the improper function 
f = l /y ,  then Cof = 0 and C;'f = CO, as would be expected. For many purposes 
it is convenient to make the following substitution into the integral above: 

y' = y a  

leading to 

C,'f = (A1.2) 

(A1.3) 



Appendix 3. Identities involving Em, E&',Vz 

First note the following commutation identities with V': 

and 

2 a  
Y a" 

= - -C,-. (-43.4) 
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